Measuring the Temporal Structure in Serially-Sampled Phylogenies.

نویسندگان

  • R R Gray
  • O G Pybus
  • M Salemi
چکیده

Nucleotide sequences sampled at different times (serially-sampled sequences) allow researchers to study the rate of evolutionary change and the demographic history of populations. Some phylogenies inferred from serially-sampled sequences are described as having strong 'temporal clustering', such that sequences from the same sampling time tend to to cluster together and to be the direct ancestors of sequences from the following sampling time. The degree to which phylogenies exhibit these properties is thought to reflect interesting biological processes, such as positive selection or deviation from the molecular clock hypothesis.Here we introduce the Temporal Clustering (TC) statistic, which is the first quantitative measure of the degree of topological 'temporal clustering' in a serially-sampled phylogeny. The TC statistic represents the expected deviation of an observed phylogeny from the null hypothesis of no temporal clustering, as a proportion of the range of possible values, and can therefore be compared among phylogeny of different sizes.We apply the TC statistic to a range of serially-sampled sequence datasets, which represent both rapidly-evolving viruses and ancient mitochondrial DNA. In addition, the TC statistic was calculated for phylogenies simulated under a neutral coalescent process.Our results indicate significant temporal clustering in many empirical datasets. However, we also find that such clustering is exhibited by trees simulated under a neutral coalescent process; hence the observation of significant 'temporal clustering' cannot unambiguously indicate that presence of strong positive selection in a population.Quantifying topological structure in this manner will provide new insights into the evolution of measurably evolving populations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PhyloTempo: A Set of R Scripts for Assessing and Visualizing Temporal Clustering in Genealogies Inferred from Serially Sampled Viral Sequences

Serially-sampled nucleotide sequences can be used to infer demographic history of evolving viral populations. The shape of a phylogenetic tree often reflects the interplay between evolutionary and ecological processes. Several approaches exist to analyze the topology and traits of a phylogenetic tree, by means of tree balance, branching patterns and comparative properties. The temporal clusteri...

متن کامل

Measuring Asymmetry in Time-Stamped Phylogenies

Previous work has shown that asymmetry in viral phylogenies may be indicative of heterogeneity in transmission, for example due to acute HIV infection or the presence of 'core groups' with higher contact rates. Hence, evidence of asymmetry may provide clues to underlying population structure, even when direct information on, for example, stage of infection or contact rates, are missing. However...

متن کامل

Measuring spatial - temporal of Yazd urban form using spatial metrics

Abstract Urban form can be affected by diverse factors in different times. Socio- economic, political and physical factors are among the main contributors. So, one of the most important challenges of urban planners is measuring and identifying urban development pattern in order to direct and strengthen it to sustainable pattern and right direction. The case study of the present paper is the ...

متن کامل

Phylodynamics on local sexual contact networks

Phylodynamic models are widely used in infectious disease epidemiology to infer the dynamics and structure of pathogen populations. However, these models generally assume that individual hosts contact one another at random, ignoring the fact that many pathogens spread through highly structured contact networks. We present a new framework for phylodynamics on local contact networks based on pair...

متن کامل

Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen)

Gene sequences sampled at different points in time can be used to infer molecular phylogenies on a natural timescale of months or years, provided that the sequences in question undergo measurable amounts of evolutionary change between sampling times. Data sets with this property are termed heterochronous and have become increasingly common in several fields of biology, most notably the molecula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Methods in ecology and evolution

دوره 2 5  شماره 

صفحات  -

تاریخ انتشار 2011